New frontiers for "big data" in fish biology and climate change research

Nathaniel (Than) Hitt1
Craig Snyder1
John Young1
Karli Rogers1
C. Andrew Dollof2
Nicholas Polys3

1 USGS Leetown Science Center
2 US Forest Service and Virginia Tech Department of Fish and Wildlife Conservation
3 Virginia Tech Advanced Research Computing Group
• We need intensive spatial data within stream networks to model fish population dynamics and forecast change

• Emerging video technology can address this need

• Imagery + crowdsourcing = powerful new opportunities for ecology
Hierarchical spatial structure of stream networks
Hierarchical spatial structure of stream networks
Hierarchical spatial structure of stream networks
Spawning site selection, Egg incubation

Movement for spawning, feeding, refugia

Source/sink dynamics

Frissell et al. (1986)
Spatial variation in Q and T

More GW variation within HUC-12 watersheds than between them

Snyder et al. (2015)
Spatial variation in Q and T

- High GW influence
- Low GW influence

100-m prediction points
Spatial variation in Q and T

High GW influence
Low GW influence

100-m prediction points

Flow gage
Stream network structure in fish thermal habitat forecasts

https://chesapeake.usgs.gov/fishforecast
Video sampling widely used in marine environments

Freshwater applications?
360Fly 4K camera
64 G
Waterproof
~ $350

Mount on mini-tripod
15-minute samples
2 cameras/pool
Environmental covariates
Adipose fin
Video count

\[\text{Slope} = 0.16 \]
\[R^2 = 0.19 \]

\text{age 1+}

\[\text{Slope} = 0.57 \]
\[R^2 = 0.75 \]
Electrofish count (3 pass)

YOY
- Slope = 0.13
- $R^2 = 0.12$

age 1+
- Slope = 0.97
- $R^2 = 0.66$
Analysis of age 1+ model residuals via RPART

- Video counts exceeded dive counts with increasing pool volume
- Video counts exceeded electrofishing counts with increasing riffle crest depth
Riffle Crest Depth

- \(D_p \) = Depth of the riffle pool
- \(D_r \) = Depth of the riffle run
- \(D_{pt} \) = Depth at the riffle's crest

Water surface (flow →)
Spatial structure in age 1+ trout abundance

A Video

B Electrofish

C Dive count
Fish identification instructional video
1000s of fish counts from across the nation
Crowdsourced estimates vs biologist counts

Age 1+ trout abundance estimates

Pool ID

n=233 n=241 n=222 n=246 n=225 n=217 n=242 n=256 n=224 n=248 n=233 n=234 n=254 n=218 n=251
Statistical power via crowdsourcing
Statistical power via crowdsourcing
Statistical power via crowdsourcing

Precision

Accuracy
Opportunities for crowdsourcing data in National Parks

New technology + social media yield new opportunities for ecology
• We need intensive spatial data within stream networks to model fish population dynamics and forecast change

• Emerging video technology can address this need

• Imagery + crowdsourcing = powerful new opportunities for ecology
Video demo