Why mussels?

- Dominated biomass in rivers
- Ecosystem services
Why mussels?

• Dominated biomass in rivers
• Ecosystem services
• ~300 species in North America
Unionid mussel species richness.

Number endemic unionid mussels.

From Abell et al. 2000
Why mussels?

- Dominated biomass in rivers
- Ecosystem services
- ~300 species in North America
- Highly imperiled
Freshwater mussels

Very threatened as a group

3 federally listed species in the Kiamichi and Little Rivers
River Continuum Concept in a Nutshell

Functional feeding groups vary in a downstream direction.

There are also differences within functional groups!

Vannote et al. 1980
Study Area

-3 rivers
 - Kiamichi (18 species)
 - Little (16 species)
 - Mt. Fork (18 species)

-Mussels
 - 28 species included in analysis
 - High densities (up to 100 mussels/m²)

-Landuse
 - Primarily forest (70-80%)
 - Human use (water extraction, agriculture)
Rivers of southeastern Oklahoma

Relatively pristine water

High biodiversity, but imperiled

Source: The Nature Conservancy
Methods

• Mussel data
 – 28 species – how to describe the community?

 – Bray-Curtis Ordination (Bray & Curtis 1954, Ecology)
 • 1st – a dissimilarity matrix is computed among sites
 • 2nd – selection of 2 sites as poles (find the community separated by the greatest distance)
 • Ordination is projected (along a gradient)
Predictable Species Shifts

- Bray-Curtis value is indicative of community composition

- Communities that are the same distance from the headwaters are more similar
Explain

• What are the factors that lead to shifts in community composition?
 – Physiography?
 – Land use?
GIS Data

• DEM – extracted watersheds for each site
• NLCD – all landuses (%forest, %urban, etc.)
• SSURGO - CaCO$_3$, % frequently flooded
• DEM and NHD combined - stream gradient, 100 m buffers
• NAIP aerial photographs - verification
Multiple Spatial Scales

• Allan (2004) suggested the use of 3 spatial scales
 – Watershed (upstream of the site)
 – Buffer (100 m around all channels)
 – Site (buffer scale 1 km upstream from site)
Example

- Created 100-m buffer using spatial analyst
- Measured 1 km upstream and selected the buffer for that length
3 Scales

• For each scale I extracted:
 – Landuse
 – Information on soils

• Gradient was calculated different ways for each scale
 – Watershed – total change in elevation/stream length
 – Buffer – change in elevation 10 km upstream/10km
 – Site – change in elevation 1km/1km
<table>
<thead>
<tr>
<th>River</th>
<th>Site</th>
<th>Mainstem Distance Downstream (km)</th>
<th>% Open Water</th>
<th>% Urban</th>
<th>% Barren</th>
<th>% Forest</th>
<th>% Grassland/Shrub</th>
<th>% Agriculture</th>
<th>% Wetland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiamichi</td>
<td>KM1</td>
<td>61.88</td>
<td>0.07</td>
<td>2.67</td>
<td>0.00</td>
<td>87.14</td>
<td>1.77</td>
<td>8.04</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>KM2</td>
<td>81.50</td>
<td>0.29</td>
<td>3.08</td>
<td>0.01</td>
<td>75.94</td>
<td>4.85</td>
<td>14.84</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>KM3</td>
<td>109.17</td>
<td>0.28</td>
<td>3.14</td>
<td>0.01</td>
<td>73.51</td>
<td>6.26</td>
<td>15.44</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>KM4</td>
<td>117.39</td>
<td>0.31</td>
<td>2.64</td>
<td>0.01</td>
<td>70.91</td>
<td>6.83</td>
<td>15.23</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>KM5</td>
<td>131.63</td>
<td>0.31</td>
<td>2.70</td>
<td>0.01</td>
<td>71.10</td>
<td>6.78</td>
<td>15.15</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>KM6</td>
<td>152.01</td>
<td>0.30</td>
<td>2.68</td>
<td>0.01</td>
<td>71.25</td>
<td>6.82</td>
<td>15.06</td>
<td>1.28</td>
</tr>
<tr>
<td>Little</td>
<td>LM1</td>
<td>18.49</td>
<td>0.00</td>
<td>1.56</td>
<td>0.01</td>
<td>84.64</td>
<td>12.10</td>
<td>1.23</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>LM2</td>
<td>51.96</td>
<td>0.21</td>
<td>2.66</td>
<td>0.01</td>
<td>80.21</td>
<td>14.36</td>
<td>2.05</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>LM3</td>
<td>59.94</td>
<td>0.20</td>
<td>2.68</td>
<td>0.01</td>
<td>79.18</td>
<td>14.41</td>
<td>3.00</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>LM4</td>
<td>67.10</td>
<td>0.15</td>
<td>3.04</td>
<td>0.00</td>
<td>77.53</td>
<td>15.63</td>
<td>3.22</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>LM5</td>
<td>93.23</td>
<td>0.15</td>
<td>3.25</td>
<td>0.00</td>
<td>77.86</td>
<td>15.96</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>Mt. Fork</td>
<td>MF1</td>
<td>43.19</td>
<td>0.31</td>
<td>4.06</td>
<td>0.03</td>
<td>76.14</td>
<td>4.01</td>
<td>15.31</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>MF2</td>
<td>53.01</td>
<td>0.27</td>
<td>3.75</td>
<td>0.02</td>
<td>78.77</td>
<td>4.28</td>
<td>12.76</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>MF3</td>
<td>62.19</td>
<td>0.15</td>
<td>3.85</td>
<td>0.02</td>
<td>78.09</td>
<td>4.94</td>
<td>12.67</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>MF4</td>
<td>71.98</td>
<td>0.24</td>
<td>3.83</td>
<td>0.02</td>
<td>78.09</td>
<td>6.36</td>
<td>11.30</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>MF5</td>
<td>76.66</td>
<td>0.22</td>
<td>3.86</td>
<td>0.01</td>
<td>79.67</td>
<td>7.09</td>
<td>8.82</td>
<td>0.32</td>
</tr>
</tbody>
</table>

*Gradient considering the elevation and length of the entire mainstem channel

**The percentage of land area in which the chance of flooding is more than 50 percent in any year but is less than 50 percent in
Further Analysis

- Used Akaike’s Information Criterion (AIC) approach to select model to predict community composition*
- Several multiple linear regressions generated
- Provides the best compromise between predictive power and model complexity

* See Burnham and Anderson 2001 for more information
Watershed and buffer scale variables best at predicting mussel community composition
2 Most Predictive Scales – Watershed & Buffer

- Gradient best predictor in the model – geomorphic control (corroborates with Arbuckle and Downing 2002)
- %Open Water another good predictor (likely driven by Sardis Lake)
Management Implications

-- Water Management
-- Watershed Management
Other drivers

• Watershed Scale
 – %Urban in top 3 models

• Buffer Scale
 – Very variable

• Site Scale
 – %Agriculture in top models

• Not included
 – Fish
Why does this matter?

• Changes in hydrology and land use are influencing community composition
• Protecting site ≠ protecting the community
• Need to consider the buffer scale, and the whole watershed
New Biogeochemistry Data Corroborates

Biogeochemical signature is indicative of the watershed.

\[y = 0.224x + 3.12 \]

\[R^2 = 0.984 \]

\[p < 0.0001 \]
Extinction Debt?

• Mussels are long-lived and slow-growing

• Time lag between disturbance and species extinctions

2011 Drought – Little River
2011 Drought – Kiamichi River
Acknowledgements

- Vaughn lab / OK Biological Survey
- Robert S. Kerr Lab – Environmental Protection Agency
- Landowners
- Funding Sources:
 - Sigma Xi
 - OU College of Arts and Sciences
 - OU Graduate Student Senate
 - OU Zoology Dept.
“Mussels are not dismissible, even by those who have little interest in the natural world. Their presence is a signature of healthy aquatic ecosystems, to which they contribute as living water filters.”

- E.O. Wilson

ANY QUESTIONS?