Energy harvesting and wildlife monitoring

Michael W. Shafer
Assistant Professor

Mechanical Engineering
Northern Arizona University
Dynamic and Active Systems Lab

OZWIM 2014
Energy budget fundamentally limits science

Tree Swallow migration map

LEGEND
- Year Round
- Summer (breeding)
- Winter (non-breeding)
- Migration

Map by Cornell Lab of Ornithology
Range data by NatureServe
Options for tracking/data collection

Terrestrial Collars
(large land animals)

Marine Tags
(large fish/mammals)

VHF Beacons
(small birds/bats/insects)

Avian PTT
(Larger birds)

Acoustic-Implantable
(Small Fish)

- Telonics
- SPLASH10-F-296
- SPOT-275
- Holohil Systems Ltd.
- Hydroacoustics Technology Inc.
Does this make sense?

Energy storage Active Element
Energy harvesting: The conversion of ambient energy sources to electrical power, typically associated with small power systems.
Outline

• Previous work in bio-based energy harvesting
• Development of piezoelectric energy harvester for birds
 – Power available from bird flight
 – Compatibility with bird motion
 – Flight testing
• Opportunities for marine animal based energy harvester
 – Current system energy requirements
 – Options for energy transduction
 – Estimates on required conversion efficiencies
 – Overview of current prototype
• Concluding remarks
Short review of bio-based energy harvesting

- Bio-based energy harvesting has been accomplished on a number of species
 - Humans:
 - Backpack straps (piezoelectric stack) [2]
 - Shoe-inserts (piezoelectric and PVDF) [3]
 - Knee swing (electromagnetic generator) [4]
 - Insects
 - Green june beetle (piezoelectric bender) [5]
 - Hawkmoth (piezoelectric resonators) [6]
 - Birds:
 - Various species (solar) [8]

Can we apply this to birds?
Alternate power sources

• Solar is a good power source, but..
 – Microwave telemetry, Inc.:
 • “As useful as the solar powered Argos/GPS PTTs were, they were not suitable for all species of birds….birds living in areas without abundant sunshine cannot rely on solar power.”

• Key difference:
 – Piezoelectric E.H.s draw energy from the animal

• Major research questions:
 – How much power is available from a flying bird?
 – Will piezoelectric E.H.s work on a flying bird?
 – Does it affect the bird’s flight?
Power available from a flying bird

- Power model for bird flight from Pennycuik [9]
- Know that birds can carry ~4% of their mass long term
- Additional power is required to fly with 4% payload?

MAXIMUM OUTPUT POWER (carrying 4% payload)

- Investigated hummingbirds to snow geese
- When transducer mass was included, power was on the order of 0.01-10 mW
Bird flight acceleration measurements

- Measured acceleration in flight on Swainson’s Thrush and Western Sandpiper
- Acceleration magnitude on the order of 1-2 g’s
- Flapping frequency ~12-14 Hz
- Consistent frequency in time [10][12][13]
Piezoelectric energy harvesting testing system

- Piezoelectric beam tuned to ~9 Hz
- Servo to wirelessly lock beam
- 100 Hz data recorder for
 - 3-channel PWM recording
 - Piezoelectric voltage
 - 3-axis accel
- Total mass 12g (2.2-3.3% of pigeon mass)
In-flight test photos

Installation of plastic chassis

System slid into chassis
Testing video results
Effects of system on flight accelerations

- Harvested 0.2-0.3 mW of power (RMS)
- Significant when compared to average power requirements of tags
State of the art: Marine bio-loggers

- Bio-loggers began as simple depth gauges
 - Maximum and time at depth [14, 15]
- Capabilities significantly enhanced from ARGOS satellite system
- Technology has progressed steadily. Now capable of [16]:
 - Position (GPS/ARGOS)
 - Heart rate
 - Acoustic Recording
 - Heading
 - Accelerometer
 - Swim speed
 - Environmental Measurements
 - Temperature
 - Salinity
 - Pressure
 - Light
 - Others
- Significant volume and mass of systems devoted to batteries
- Satellite communications are energy hogs!
Bio-logger energy consumption

- Use tags from *Wildlife Computers™* as energy budget basis.
- Energy consumption depends on how data is offloaded and number/type/fidelity of sensor measurements.
 - Lowest: Radio/acoustic beacon. Requires listening station and triangulation (not shown)
 - Medium: Data stored on tag. Requires retrieval.
 - High: Data stored on tag. Processed and transmitted via ARGOS.
- Tradeoff between capabilities and tag lifetime based on stored energy.
Bio-logger energy consumption

- Use tags from *Wildlife Computers*™ as energy budget basis.
- Energy consumption depends on how data is offloaded and number/type/fidelity of sensor measurements.
 - Lowest: Radio/acoustic beacon. Requires listening station and triangulation (not shown)
 - Medium: Data stored on tag. Requires retrieval.
 - High: Data stored on tag. Processed and transmitted via ARGOS.
- Tradeoff between capabilities and tag lifetime based on stored energy.
Bio-logger energy consumption

- Use tags from *Wildlife Computers™* as energy budget basis.
- Energy consumption depends on how data is offloaded and number/type/fidelity of sensor measurements.
 - Lowest: Radio/acoustic beacon. Requires listening station and triangulation (not shown)
 - Medium: Data stored on tag. Requires retrieval.
 - High: Data stored on tag. Processed and transmitted via ARGOS.
- Tradeoff between capabilities and tag lifetime based on stored energy.
Available energy sources

- Marine environment provides a number of potential sources
 - **Solar**: bio-fouling, reductions as depth
 - Fluid-kinetic: energy from flow around the animal
 - Hydrostatic Pressure: energy required to overcome buoyancy
 - Direct from animal: thermal, body articulation, etc.

Solar power beneath the ocean surface [19]
Available energy sources

- Marine environment provides a number of potential sources
 - Solar – bio-fouling, reductions as depth
 - **Fluid-kinetic**: energy from flow around the animal
 - Hydrostatic Pressure: energy required to overcome buoyancy
 - Direct from animal: thermal, body articulation, etc.

<table>
<thead>
<tr>
<th>Species</th>
<th>Average Speed (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern elephant seal</td>
<td>0.9 - 1.6</td>
</tr>
<tr>
<td>Yellowfin tuna</td>
<td>0.46-0.9</td>
</tr>
<tr>
<td>Sperm whale</td>
<td>0.8</td>
</tr>
<tr>
<td>Orca (shallow/respirating)</td>
<td>1.6</td>
</tr>
<tr>
<td>Orca (deep/hunting)</td>
<td></td>
</tr>
<tr>
<td>Leatherback seaturtle</td>
<td>0.9</td>
</tr>
</tbody>
</table>

\[P = \frac{1}{2} \rho V^3 A \]
Available energy sources

- Marine environment provides a number of potential sources
 - Solar – bio-fouling, reductions as depth
 - Fluid-kinetic: energy from flow around the animal
 - **Hydrostatic Pressure**: energy required to overcome buoyancy
 - Direct from animal: thermal, body articulation, etc.

<table>
<thead>
<tr>
<th>Species</th>
<th>Dive Frequency (dives/day)</th>
<th>Mean Dive Duration (min)</th>
<th>Mean Dive Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern elephant seal</td>
<td>60</td>
<td>22</td>
<td>428</td>
</tr>
<tr>
<td>Yellowfin tuna</td>
<td>20.2</td>
<td>2-10</td>
<td>50-300</td>
</tr>
<tr>
<td>Sperm whale</td>
<td>29</td>
<td>36.2</td>
<td>800</td>
</tr>
<tr>
<td>Orca (shallow/respirating)</td>
<td>600-756</td>
<td>0.38-0.55</td>
<td>2.75</td>
</tr>
<tr>
<td>Orca (deep/hunting)</td>
<td>66-102</td>
<td>4.25-4.75</td>
<td>29</td>
</tr>
<tr>
<td>Leatherback seaturtle</td>
<td>84-120</td>
<td>10</td>
<td>61.6</td>
</tr>
</tbody>
</table>

\[E = \rho ghV \]
Energy estimates for pressure/dive

- Estimate uses average number of dives per day
- Assumptions:
 - Volume of 250 cm3 (~1 cup) of displacement
 - One harvesting cycle per dive (could get two)
 - 200 J/day energy target
- Very low required efficiencies

<table>
<thead>
<tr>
<th>Species</th>
<th>Depth (m)</th>
<th>Pressure at depth (atm)</th>
<th>Energy (J)</th>
<th>Energy/day (kJ/day)</th>
<th>Req. Eff. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern elephant seal</td>
<td>428</td>
<td>43</td>
<td>1080</td>
<td>65</td>
<td>0.31</td>
</tr>
<tr>
<td>Yellowfin tuna</td>
<td>175</td>
<td>17</td>
<td>440</td>
<td>8.9</td>
<td>2.2</td>
</tr>
<tr>
<td>Sperm whale</td>
<td>800</td>
<td>80</td>
<td>2020</td>
<td>59</td>
<td>0.34</td>
</tr>
<tr>
<td>Orca</td>
<td>2.75/29</td>
<td>0.3/3</td>
<td>7/73</td>
<td>11</td>
<td>1.8</td>
</tr>
<tr>
<td>Leatherback seaturtle</td>
<td>29</td>
<td>6.2</td>
<td>160</td>
<td>16</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Energy estimates for fluid-kinetic source

- **Assumptions**
 - Average swimming speed at 50% of the time per day (likely under estimate)
 - Control surface for fluid flow (2 and 5 cm²). Size of US penny and quarter
 - Use a 200 J/day energy target for generation (>150J/day ceiling)
 - Assume a required efficiencies are small (even with the conservatism)

<table>
<thead>
<tr>
<th>Species</th>
<th>Speed (m/s)</th>
<th>A = 2 cm² (ϕ= 1.6 cm)</th>
<th>A = 5 cm² (ϕ= 2.5 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern elephant seal</td>
<td>1.25</td>
<td>200 (2.3)</td>
<td>500 (0.9)</td>
</tr>
<tr>
<td>Yellowfin tuna</td>
<td>0.68</td>
<td>30 (14.3)</td>
<td>80 (5.7)</td>
</tr>
<tr>
<td>Sperm whale</td>
<td>0.8</td>
<td>50 (8.8)</td>
<td>130 (3.5)</td>
</tr>
<tr>
<td>Orca</td>
<td>1.6</td>
<td>420 (1.1)</td>
<td>1000 (0.4)</td>
</tr>
<tr>
<td>Leatherback seaturtle</td>
<td>0.9</td>
<td>80 (6.2)</td>
<td>190 (2.5)</td>
</tr>
</tbody>
</table>
Pressure system initial prototype

- System operates by allowing high pressure seawater to flow into an empty chamber
- Micro-turbines convert flow to electrical energy
- Initial Turbine Efficiency Testing
 - ~1.5-1.8% efficient across input pressures tested
 - Slight modifications have shown large increases in efficiency
 - Should easily be able to meet 200 J/day target

- Initial system testing
 - 90 psi (~60 m depth)
 - 1.6 J (2 x per dive)
 - 192 J/day for elephant seals
 - Currently testing for exact dives profiles
Conclusion

- There is a current need for energy harvesting for wildlife telemetry systems
 - Long, remote deployment. Science capabilities currently limited by energy stored on batteries
 - Majority (mass and volume) of systems are devoted to batteries
 - Increases in daily energy allowance would enable higher fidelity data and transmission via satellite.
 - This excites biologists

- A number of energy sources are available across species

- With conservative assumptions,
 - Fluid-kinetic transduction systems require 0.5-6% efficiency
 - Hydrostatic pressure cycle generators require 0.3-2.2% efficiency

- This appears to well within the reach of standard energy harvesting technologies.
Acknowledgements

• This research was supported by a grant from NAU Innovations and the Arizona Technology Research Initiative and National Science Foundation Graduate Research Fellowship Program under Grant No. DGE0707428 and NSF Grant No. CMMI-1014891 (Lab-on-a-Bird)

• Lab members

Dr. Eric Morgan (post-doc) Greg Hahn (M.S. candidate) Cody Reed (undergraduate)
One last note... if I have time

- VHF Locating Drone
- Senior Capstone Team
- 3 Mechanical Engineers
- 6 Electrical Engineers
- Expected multi-year project
Questions/Refs

- Always interested in collaborative projects!
 - Michael.Shafer@nau.edu
 - Phone: 928.523.8696
 - www.cefns.nau.edu/Groups/dasl/

[17] Photo credit: Daniel Costa. UC Santa Cruz.
PACIFIC OCEAN AT SAN DIEGO, CALIFORNIA

DOWNWELLING IRRADIANCE

TEMPERATURE: 15-18°C

PANEL ORIENTATION: HORIZONTAL, UPWARD FACING

INSOLATION ON HORIZONTAL WATER SURFACE: 80 mW/cm²

TIME: NOON ON AUGUST 20, 1978

SECCHI VISIBILITY: 16.5 ft

Voltage (V)

Surface

1 ft depth

5 ft depth

10 ft depth

Power (W)

Voltage (V)
Dive profile of sperm whale
Spacecraft analogy

- **Voyager**
 - Designed for deep space
 - No local energy sources
 - Uses RTG (nuclear power source)
 - Long term battery

- **Hubble**
 - In Earth orbit
 - Abundant solar power
 - Almost all spacecraft with orbits closer than asteroid belt use solar power
Unlocking of piezoelectric harvester

- Acceleration but no voltage
- Acceleration and voltage
- Harvester unlocked

Graph showing the locking signal with marked regions indicating acceleration with and without voltage.
Piezoelectric energy harvester overview

\[\sigma_x = E_x \varepsilon_x - eE^f_y \]

- Stress
- Strain
- Electric field

Piezoelectric Layers

- Host Structure
- Substrate Layer

Variables
- \(w_h(t) \)
- \(w(x, t) \)
- \(t_s \)
- \(t_p \)
- \(m_{\text{tip}} \)
- \(L \)
Significant harvestable power from birds

Harvestable power as a function of bird mass and transducer specific power
Significant harvestable power from birds

Harvestable power as a function of bird mass and transducer specific power

Species Histogram [11]